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Exact analytical solutions of three related axisymmetric mixed problems of the theory of elasticity are given. These problems 

are concerned with the pressure of an annular or circular punch on a two-layer half-space taking into account cohesion and the 

existence of an annular or circular crack at the interface of the layers. The formulation and solution of these problems are based 

on a special regularization of the solution of the first fundamental boundary-value problem of the theory of elasticity for a single 

layer when there are arbitrary normal and shear loads on its boundary planes. The solution is constructed by the Hankel 

transformation method which ensures that the integrals converge for all stresses and displacements. 0 2002 Elsevier Science 

Ltd. All rights reserved. 

The method of regularization of the basic solution, proposed in [l] and developed in [2] enables one 
to reduce the initial problems to well-studied* resolving systems of singular integral equations. This 
approach is extended below to the formulation and solution of more complex contact problems for a 
multilayer half-space with cracks at the boundaries of the layers. 

1. THE FORMULATION OF MIXED PROBLEMS 

The two-layer space under consideration consists of a layer of arbitrary thickness H and a base layer 
of infinite thickness (a uniform half-space) which are given the numbers 1 and 2, respectively. The moduli 
of elasticity Ei and Poisson’s ratios vi(i = 1,2) of the layers can take different and arbitrary values. We 
take the origin of a cylindrical system of coordinates r, z as being in the interface plane of the layers 
with the 02 axis directed upwards and orthogonal to the layers. In this system of coordinates, the upper 
layer 0 c z < H and the base layer z c 0 are separated by the plane z = 0, and the plane z = H is the 
upper boundary of the upper layer (Fig. 1). 

The pressure P of an annular or circular coupled punch rl c r s r2(r1 2 0) is applied to the boundary 
z = H, there is an annular or circular crack r3 c r s r4(r3 2 0) in the interface plane z = 0 and, outside 
the crack, the conditions for rigid adhesion of the layers, which ensure the continuity of the normal 
and shear stresses and displacements, must be satisfied. In the first problem, the punch and the crack 
the annular, where r3 > r2 (version 1) and r4 < rl (version 2). In the second problem, the punch is annular 
and the crack is circular r3 = 0, r4 < rl and, in the third problem, the punch is circular (r, = 0) and the 
crack is annular (r3 > r2). In all of the above-mentioned problems, arbitrarily specified symmetric normal 
and shear loads are applied to the edges of the cracks. We are particularly interested in problems with 
load-free cracks which, under the action of a punch, are capable of opening in the case of specific elastic 
and geometric characteristics. These characteristics can only be established by numerical solution of 
the problems, thereby confirming the correctness of their formulation, as has been shown previously 

PI. 
The regularized basic solution of the fundamental boundary-value problem for a single layer described 

below and the solutions of mixed problems for a two-layer half-space are given in the dimensionless 
variables p = r/u, t = z/H, where a is a certain value of the radius r, which is taken as the linear unit of 
measurement. In the numerical solutions of the problems, it is convenient to equate the quantity a, for 

tPrikl. Mat. Mekh. Vol. 66, No. 4, pp. 670-680, 2002. 
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Fig. 1 

example, to r2 or r4 (Fig. 1). The magnitudes of the ratios h = H/a, ?j = q/a (j = 1,2,3,4), 6 = El/E2, 
x = 6(1 + v2)/(1 + vt) are the characteristic geometrical and elastic parameters of mixed problems. 
On the dimensionless axis Ot, the upper layer (i = 1) is located in the interval 0 6 t 6 1 and the base 
layer (i = 2) is located in the unbounded interval -m < t < 0. We will denote the normal and shear 
stresses and the axial and radial displacements in a layer by o,Jp, t), Zrzi(p, t), Wi(p, t) and Ui(p, t), where 
i = 1,2 is the number of a layer. 

2. THE REGULARIZED BASIC SOLUTION OF MIXED PROBLEMS 

The regularized basic solution of mixed problems for a two-layer half-space was constructed [2] with 
the following boundary conditions on the external surface t = 1 and on the interface of the layers 
t=O 

0,1 = PI(P)+P;tP)~ %zI = q,(p)+q;(p) when t = 1 (2.1) 

G,l = 0,2 = PO(P)? 7-l = 7,2 =qo(p) when t= 0 (2.2) 

where pj(p) and qj(p) (j = 0, 1) are arbitrary functions on the semi axis 0 c p < 00, which can be 
represented by the Hankel integrals 

Pi(P) = 7 PFj<P)JO(PP)dp* qj(P) = 7 Pqj@Vl(PPMP (2.3) 
0 0 

Fj(P) = L PPj (P)JO(PP)dP* qj (P) = 7 Pqj(PVl (PPMP (2.4) 
0 

p:(p) and q;(p) (0 < p c -) are functions, which are as small as desired, intended for the regularization 
of the solution of problem (2.1)-(2.4) in the case of a single upper layer (i = 1). They will be presented 
and justified below. The following constructive representation of the axial and radial displacements 
Wi(p, t) and Ui(p, t) (i = 1, 2) on the boundaries of the layers t = 1 and t =2 are required from this 
solution for the mathematical formulation of the mixed problems considered 

wi(P,t) = 7 Awi(t+P)Jo(pP)& ui(p>t) = 7 A,i(t,P)JI(pP)dp (2.5) 
0 0 
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~~(t,P)=E;‘(l+vi)aD,,(f,p), i=l,2 

0, I (k PI = Glr, @IF, (PI + 4pmCPOW~ + 4.x+, CP)S, CP> + 4&P)qO(P)~ 
u =w,u; k=O,l (2.6) 

0, ~(0. I.9 = &,,ooM% + &x&(PL u = w, u 

The functions A uskm(P) and the constants A,,, (u = w, u; s = p, q; k, m = 0,l) are given by the following 
formulae 

Ap4vpl I = 0, (535‘l+ 45’5:) 
A’pAwpol = -ApAwpl~ = ‘hb(b +bb) 

AgAwq, I = ApAup, I = 45: + 46:6: 
A,A,,o = AqA,,o, = -A&,oI = ‘3%~~ 
ApAup,o =2~,5,(W,5, -5&J-5,53) 

A&q, I = a, e&4 - 4515:) 
ALqAuqlO = -2qL((b,R+1>5~ +(R-1)5,5~) 

ApAwpoo = -q(53(5‘l - %3)+45’5;) 

4$w,oo = b,(I+b,R)c; + 4(1- R)&,;5; 

QLpm =b,W& +a,R5,)+45,5~(5,-a,R) 

4$UgOl = 242(53 -5164) 

4#xigoo =a,(4(1-R)5,5~-(I+b,R)5354) 

AP =<,(k~ +a,R5,)+45,5~(a,R-5,) 

A’4 =(I+b,R)5:+4(R-1)5:5: 

i VW 
=A “q~=2(l-v,), Aupoo =Aw4@) =I-2v, 

U, =2(1-v,), b, =I--2v,, E,, =hp, 52=exp(-hfb, E,3=1-kz. k4=1+5: 

(2.7) 

The representation of the intensity functions of the normal and shear loads in boundary conditions (2.1) 
on the semi-axis 0 s p c 00, corresponding to solution (2.5)-(2.7) have the form 

P;(P) = -7 PNP)A,, ,@)J,@WP 
0 

Cw 

&(P) = -j P&PM,,, I (PM W-94 
0 

where A wsllu9 6 = PT 4) are functions which are represented by formulae from (2.7) where it is assumed 
that 

R(P) = & exp(-np), 0 < ~4 1, n %4 (2.9) 

The introduction of the load intensity functionspT(p) and q:(p) (2.8) into boundary conditions (2.1) 
is solely intended to ensure, through the function R(P), the convergence of the integrals (2.5) which, 
in the case when R(p) = 0 and, therefore, whenp;(p) = q;(p) = 0, diverge at the lower limits. However, 
it is required here that the moduli Ipt(p) 1 and [q:(p) 1 (0 G p < -) and the modulus of the principal 
overload vectorpg(p) (the principal overload vector q;(p) vanishes by the symmetry condition) should 
not exceed the quantity 6 = 6(&, n) > 0, which is as small as desired and depends on the constants E 
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and n of the function R(P) (2.9). When E + 0 and n + m, we have S(E, n) = O(n-‘a ), and, 
consequently, the functions p:(p), q;(p) in boundary conditions (2.1) can be interpreted as 
infinitesimal functions of the regularization of the basic solution while retaining its form and an accuracy 
which may be as high as desired. 

To formulate the mixed problems, we write out the principal and higher terms of the asymptotic 
expansions of the functions (2.7) as p -+ M 

A wpl I ’ A uql I ’ -A -*uqoo wpco~ - 20 - VI )+ w -v* ,m&P> 

A wqll~ Aupw 4vqoo~ Aupoo -1-2~,+8(1-~,)5:(P)5~(P) 

-A bVplO* Awqtov -*,,o~ Auq,o 

(2.10) 

3. FORMULATION AND SOLUTION OF THE MIXED PROBLEM FOR 
ANANNULARPUNCHANDCRACK 

Non-zero axial displacements and zero radial displacements are specified in the external boundary of 
the two-layer half-space t = 1 in the contact area for the coupled punch Lt = (0 < PI =Z p 6 p2) 

4 
-WI =-h+y(p), u, =o 
(1 + v,)a 

(3.1) 

and zero axial and shear stresses 

=,I =o, T,, =o, PEL, (3.2) 

outside the contact area for the punch L2 = (0 s p -c pl, pz < p < -). 
We will now explain that, under conditions (3.1) the constant 11 is expressed in terms of the depth 

of loading of the punch into the layer WY according to the formula h = Elw~/[a( 1 + vt)] > 0, while the 
function y(p) 2 0 describes the surface of the base (the bottom) of the punch. 

The axial and shear stresses 

GZI = CT,2 = PO,(P)> O,l =z,2 =40,(p), pE r, (3.3) 

are specified on the interface of the layers t = 0 in the upper and lower edges of the annular crack in 
the region L3 = (0 -z p3 c p s p4) and the conditions 

WI = wz, ut =uz, P E L4 (3.4) 

for the continuity of the axial and radial displacements must be satisfied outside the crack in the region 
L4=(OcP<P3,P4<P<-J). 

Furthermore, in the region L4, the basic solution automatically satisfies the conditions for the 
continuity of the axial and shear stresses 

(Jzl = (5,2. Trzl = 7,2, P E L‘$ (3.5) 

Substituting the formulae of the basic solution (2.1)-(2.6) into boundary conditions (3.1)-(3.4) we 
obtain the following system of dual integral equations in terms of the Hankel transform 

7 o,,(l,P)Jo(Pp)dp=-h+Y(p). 7 ~“,cLP>J,(Ppm=a PEL, (3.6) 
0 0 
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&,2(O>P)JO(PPMP = 0, T &2(O?P)J,(PP)dP = 0. P E L, (3.9) 
0 

The functions DUlz(O, l3) = D,,(O, p) - @U2(0, l3) (u = w, U) are represented by formula (2.6) for 
D,i(O, p), taking into account the replacement of A,,Cto(p) (u = w, u: s = p, q) by the following functions 
A&P) 

A VO =A w,,oo - 2(1- vz )x9 Awqo = Awqoo - (1 - 2% )X 

(3.10) 
A 

UP0 
=A o/,,,,, - Cl- 2v, )x7 Auqo = AL,qoa - 2(1- vz )X 

Taking boundary conditions (3.2) into account, we write their Hankel transforms in the form 

P, CP) = i PPI (P)Jo(PP)dP, 9r (P) = I P4, (PM (PPMP (3.11) 
LI 

It can be seen that, according to the inversion theorem Hankel transforms (3.11) automatically satisfy 
conditions (3.7) and, therefore, these conditions are excluded from any further consideration of the 
system of dual integral equations (3.6)-(3.9). 

When account is taken of (3.11) the remaining system of dual integral equations (3.6), (3.8) and 
(3.9) can be immediately reduced to a system of singular integral equations on the unbounded contour 
(L,, L4), which give rise to additional difficulties in the analytical and numerical investigation of the 
system of singular integral equations. It is therefore advisable initially to transform the system of dual 
integral equations (3.6), (3.8) and (3.9) to an equivalent system of dual integral equations, that sub- 
sequently reduces to a system of singular integral equations on the bounded contour (L,, L,) which is 
convenient for analytical and numerical investigations. In order to implement this approach, in the system 
of dual integral equations (3,6), (3.8) and (3.9) we will change from the transformsP@) and q0(13) to 
the new Hankel transformsf(P) and g(p) using the formulae 

f(P) = Q,2(OYP), g(P)= &,2(O,P) (3.12) 

The Hankel transformsT( p), g( l3) correspond to specific unknown functionsf(p),g(p) on the contour 
L3 and are represented by the Hankel integrals 

S(P) = j Pf(Pvo(PiwP~ i?(P) = j P&PM (PPMP (3.13) 
LJ L3 

When account is taken of the above-mentioned constructive expressions for the functions_D,i2(0, p) 
(u = w, u), equalities (3.12) represent a system of functional equations in the transforms f(P), g(p), 
i%(P)t NV (k = 0,1X 

From this system, we find expressions for the transformsPo@) and &,@) in terms ofj(@,g(@,pi(P) 
and %(P) 

?jo(P) = N,(P), ?o(P> = N,(P) (3.14) 

where 

Auf = L,o~A,x,~ Aus = -b,o JA, 

A wf = -Awpo I A,, Awg = Aup IA, 

Aw = Aupo4vqo - AuqoAwpo 

St, =+Auso, +hAwSo,, u =w.u; s=p,q 

(3.16) 

(3.17) 
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Substituting formulae (3.14) into Eqs (3.6) and (3.8) and formulae (3.12) in_to Eq. (3.9), we obtain 
the following system of dual integral equations in the transformspt(@, qt(P),f(@, g(p) 

$ Px4@vo(PP)4 = PO,(P)7 $ P~,@V,(Plw~ = 40,(P)* P E &I (3.19) 

(3.20) 

where 

Mu(P)=A~~,(P)+~~,(B)+~~(P)+6tgg(P), u = w,u 

4, =&s,, -~,oB,,,,-4.&,,, v =w,u; s=p,q 

4,, = QoAu, + QoA,+ u = w,u; I= f,g 

(3.21) 

(3.22) 

(3.23) 

We then carry out the following transformations of Eq. (3.19) and (3.20): we multiply the first equation 
of (3.19) by p and integrate with respect to p within the limits from p3 to p and then divide by p; we 
integrate the second equation of (3.19) with respect to p within the limits from p3 to p, differentiate 
the first equation of (3.20) with respect to p, multiply the second equation of (3.20) by p and differentiate 
with respect to p and then divide it by p. As a result, the transformed equations have the form 

$ N,(P)Jl(pp)dp=G(p)+~, $ N,(P)Jo(pP)dP=F(p)+C, PEL, (3.24) 

$ lmPv,(Plw~ = 0. P E L4 (3.25) 

F(p) = - 7 qo,(x)dr 
P3 

(3.26) 

D and C are arbitrary constants which are determined below. According to the inversion theorem Hankel 

transforms g( p) andT(P) g’ tven by (3.13) automatically satisfy Eqs (3.25) and, consequently, the unknown 

transformsi&( 40),7(P) andg(P) are now determined by the system of equations (3.18) and (3.24) 

only on the bounded contours L, = (0 c pt G p s ~2) and L3 = (0 < p3 G p G p4). 
Next, using the asymptotic form (2.10) and equalities (3.10), we separate out the principal terms of 

the functions A,,@) (u = w, U; r = p, q,f, g) (3.22), (3.16) when p -+ 00 

(A,&J=a, +(&&,) @,,.A,,,)=b, +@,,.A=‘+,) 

(3.27) 

(A,/,A,,)=a, +(A:,, A&) (A,&,,)=~2 +(&,J$,) 

where the constants aI and b, are determined by formulae (2.7) and 

a2 =cl(d’-c*), 6, =dl(d2 -c2) 

c=2(1-v,+(l-v,)x), d=I-2v,-(I-2V,)X (3.28) 

Whenfl+m, the functions A:&3) and B,,(fi) (u = w, U; r = p, q,f, g), defined by formulae (3.27), 
(3.23) and (3.17) are of the order of infinitesimal functions 

& = oc5: (I%; (PI). St, = O(5, (P&(P)) (3.29) 
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The mathematical apparatus used to investigate the analogous system of equations in the basic mixed 
problem can be extended completely to system of integral equations (3.18) (3.24) taking account of 
formulae (3.27). On applying it, we reduce the above-mentioned system of equations for the transforms 
to the following system of two integral equations, with Cauchy kernels for complex functions of the 
real variable Wj(X) = q,(x) + iIYj(X) and their conjugates G$(x) = @j(X) - is,(x) (j = 1, 2) which solves 
the initial problem, 

b. p2j w(t) 
UjOj(X)+-l. I 

I 2 P2n H;(xJ)o,(t)+ fq-w)o,,(r) 

Xi 
---dr+-- J 

PZj-I ‘-’ x n=l pzn-, JCx - PZj-I )Cf -P*n-I) 
dt = 

2 *jCx) 

=qTy 

Here 

Hj’, (x,!) = Kmj, (Xv t) + K, ljn (XT I) + i[K,oj, (x, t) T Koljn (x,t)l 

K,jn = x~GooJ~ + ajMmjn* Koljn = XGoljn + bJMo,jn 

KIOjn =“10jn +bjM~~jn* Kevin =G,,jn +ajM~~~n 

'kmjn = 7 bk,j”Skj(X,P)Sm,(f,P)dP, k,m CO,! 
0 

b 0011 =L\t,(b bo,,, =A’,,@,. b,,,, =A*,@>, b ,,,, = A;,(p) 

b 0012 = %(b bo,,, = B,,(P)+ 4x2 = 4,,(B), b,,,, = B,,(p) 

b 0021 =-k,(P), bo,z, = -4,v$b 402, = -B,,(p), b,,*, = -B,,(p) 

b 0~22 = A’,,(P)~ bo,22 = &&bv b,,,, = A;,(p), b,,,, = &((p) 

sOj(xVP)= 

Mkkjj = 

2n1kkjj (x* f, 

rcrl:(xJ) ’ 
k =O,I 

M,oii = -5$)q2(t,x) 

moojj = 

m I Ijj = -P*j-1 + ’ * (ml,(x)--30)) 
2(x2-r ) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

2 2 

11T(X,t)=~(x*P2j_,)(rfP2j-,), fl*(X9f)=L J- ‘2-p2j-’ ’ 
-- 

2 
t+x x -P2j_l 2 

tl3(X) =(X2 -P:j-])ln 
x + PZj-I 

x-P2j-l 
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MkC,=Oj#n; k,l=O,l 

a+(x) = w, )-h)- GFl +xJ-p,~, ;y$ 
x -P 

~2(x) = Jx-p, r _x j 401 (P)dP + i j ppOl(p)dp I : ” + iD 
P) J7.q Pj &q7 fi 

(3.36) 

(3.37) 

Note that the functions M&$, t) (3.35) defined in the squares o2j_1 G x, t < o2j (j = 1, 2) have a 
removable singularity on the diagonals t = x. The values of these functions when t = x are assumed to 
be equal to the limiting values when t -+x which are determined using 1’Hopital’s rule. 

The unknown transformsp,@), q,(p) (3.11) andf(P),jj(P) (3.13) are expressed in terms of the real 
parts Cpi(X) = Re Oj(X) and the imaginary parts fij(X) = Im Wj(X) of the complex functions of the real 
variables Oj(X) (j = 1,2), which satisfy the system of singular integral equations (3.30) using the formulae 

(3.38) 

(3.39) 

From the theory of the identity transformation of the system of equations (3.18), (3.24), it automatically 
follows in the system of singular integral squations (3.3) in the case of transforms (3.11) and (3.13) 
that the transformsj&@), ?jt(p) (3.38) andf@),g(P) (3.39) re d uce all the equations of the system (3.18) 
(3.24) and the initial system (3.18)-(3.20), with the possible exception of Eqs (3.20), to identities. These 
last equations (3.20) are differentiated with respect &I p during the transformation process and, therefore, 
need to be checked by substituting the transformsf@) andg(P) (3.39) into them. A check showed that 
Eqs (3.20) are only satisfied in the case of the additional conditions [2] 

(3.40) 

from which the arbitrary constants C and D, on the right-hand side of the system of singular integral 
equations (3.30), appearing in the function @2(x) (3.37) are determined. 

In order to satisfy conditions (3.40), we will seek the solution of the system of singular integral 
equations (3.30) in the form 

o,(x)=oj,(x)+Coj2(x)+ Dwj3(x), j= I,2 (3.41) 

where Oil(X), Wjz(X) and Oj3(X) are particular solutions of the system of singular integral equations (3.30) 
which, respectively, take account of its right-hand side: (1) C = D = 0, (2) @t(x) = 0, Q(X) = x/d- 
(C = 1, D = 0) and (3) @t(x) = 0, Q,(x) = i/d-s (C = 0, D = 1). On substituting the real part 
(p2(x) = cpzl(x) + CT~~(X) + Dv~~(x) and the imaginary part 62(x) = fi2t(x) + C622(x) + D623(x) of the 
function w2(x) (3.41) into equalities (3.4), it is easy to write out the closed system of two algebraic 
equations in the constants C and D from which they are calculated. 

4. THE MIXED PROBLEM OF AN ANNULAR PUNCH 
AND A CIRCULAR CRACK 

The mixed problem of an annular punch and a circular crack is considered as a special case of the 
problem from Section 3 when p4 < pt and p3 = 0. At the same time, it is of interest in its own right. 
Its formulation and solution repeats all the calculations presented in Section 3. Formally, it reduces to 
the system of singular integral equations (3.30) on the bounded contour 
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which is easily written out by assuming the values of ozj_i and pln_l whenj, n = 2 in all the formulae 
(3.30) (3.34), (3.35) and (3.37) to be equal to zero. In this case, the form of the following functions is 
simplified 

%(Y,P) = cos(~P)lJL~ &(Y~P) = JS;sin(yfQ y = X.t 

(4.1) 
M,,(x,t) = M,,,,(W) = 0. M~,*~(X’?)=M,~*~(X,t)=-J;;l[2(X+t)l 

However, the system of singular integral equations (3.3) on the contour (L,, Li) is inconvenient for 
investigating the problem being considered due to the fact that mathematical difficulties are encountered 
in constructing a closed, anal tical solution of the characteristic system of singular integral equations 

Qy. (3.30) on the contour (L,, L3) m the appropriate class of functions (continuous and bounded at the 
crack centre p = 0 and unbounded at the end p = pJ) and, consequently, regularization of the initial 
complete system of singular integral equations by the Karleman-Vekua method. In order to avoid these 
difficulties. It is best to transform identically the system of singular integral equations (3.30) on the 
contour (L,, Li) into an equivalent system of singular integral equations on the contour 

(4.2) 

by writing the first equation on the contour L, = (pi G p G p?) when p3 = 0 and the second equation 
on the contour LT = (-p4 6 p c p4). In this case, the functions M ~OZZ(X, t) and Mai&, t) (4.1) when 
account is taken of the evenness of (am and the oddness of&(t), change from the regular part into 
the singular part of the system of equations, the continuity of the new kernels. 

is taken into account and the free function @z(x) (3.37) is replaced by the function 

(4.3) 

On taking account of what has been said above, writing out the system of singular integral equations 
(3.3) on the contour (L,, LT) does not present any difficulties whatsoever. 

The required transformspr@), q,(p) andf@), g(p) are defined in terms of the real parts cpj(X) and 
imaginary parts tij(X) of the complex functions of the real variable O,(X) (j = 1, 2) which satisfy the 
system of singular integral equations (3.30) on the contour (L,, Ls) (4.2) using formulae (3.38) and 

f(P)='/ Cp2(x)COS(xf5>dr, H(P)=Pj b2(x)sin(xp)dx 
0 0 

(4.4) 

Substitution of the transformsg(P),~(P) (4.4) into Eqs (3.20) shows that the first equation of (3.20) is 
automatically satisfied while the second equation is only satisfied subject to the additional condition 

P4 

; cp2(x)~=O (4.5) 

from which the arbitrary constant C, occurring in the function $(x) (4.3) is determined. The second 
constant D in relation (4.3) as an un-called for constant, is taken as being equal to zero. 

In order to satisfy condition (4.5) we will seek the solution of the system of singular integral equations 
(3.30) on the contour (L1, Lz) (4.2) in the form 

Wj(X)=Ojl(X)+CWj2(X), i=1,2 (4.6) 

where Oil(x), e+z(x) (j = 1,2) are particular solutions of the above-mentioned system of singular integral 
equations takmg into account, respectively, (1) C = 0, D = 0 and (2) @i(x) = 0, @2(x) = 1 (C = 1, 
D = 0) on its right-hand side. On substituting the real part cpz(x) = (pzi(x) + Ccp2&) of the function 
w2(x) (4.6) into equality (4.Q it is easy to write out the linear equation for determining the constant 
C. 
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5. THE MIXED PROBLEM OF A CIRCULAR PUNCH 
ANDANANNULARCRACK 

The mixed problem of a circular punch and an annular crack is considered as a special case of the 
problem from Section 3 when pj > pz and pi = 0. In this case, the form of the following functions are 
simplified 

&),,(x,t)= M I,,, C&t)=@ M~,,,(X,f)‘M,~,,(X,t)~~/[2(x+t)l (5.1) 

By analogy with the problem from Section 4, it is advisable to transform the system of singular integral 
equations (3.30) to the equivalent system of singular integral equations on the contour 

W&)=(-P, c PCP2? P3~P~P4) (5.2) 

by writing the first equations on the contour L; = (-pz s p c p2) and the second equation on the contour 
L3 = (p3 s p < p4) when p1 = 0. At the same time, when account is taken of the evenness of v,(t) and 
the oddness of 6,(t), the functions M 0111(~, t), Mlo,i(x, t) (5.1) change from the regular into the singular 
part of the system of equations, the continuity of the new kernels 

F/f, = f$&f)lJI;;, l?F2 = H;2(x,t)l&, fit, = H;,(x,t)l& (5.3) 

is taken into account and the free function @i(x) (3.36) taking account of the equality y(O) = 0, is 
replaced by the function 

(5.4) 

The required transforms j&(p), if,(p) andT(P), g(p) are defined in terms of the solution of the system 
of singular integral equations (3.3) on the contour (LT, L3) (5.2) W,(X) (j = 1, 2) in the form (3.41) 
using formulae (3.38) and (3.39) when p1 = 0 taking account of the functions So,(y, p), S,i(y, l3) (5.1). 

The arbitrary constants C and D, occurring in the functions Q2(x) (3.37), are determined using the 
technique empLoyed in Section 3 from conditions (3.40). At the same time, the functions @i(x) (3.36) 
is replaced by @i(x) (5.4). 

1. 

2. 
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